r Compiling with Non-Parametric Polymorphism

(Preliminary Report) D T l C |

Robert Harper and Greg Morrisett ELECTE
February 1994 FEB 06 1995
CMU-CS-94-122 G

R

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Also published as Fox Memorandum CMU-CS-FOX-94-03

Accesion For

NTIS CRA&I
DTIC TAB
a

Unannounced
Justification

By
Distribution |

Availability Codes

. Avail and/or
Dist Special

M

This research was sponsored by the Defense Advanced Research Projects Agency, CSTO,VundeI the
title “The Fox Project: Advanced Development of Systems Software”, ARPA Order No. 8313, issued by

ESD/AVS under Contract No. F19628-91-C-0168.
The views and conclusions contained in this document are those of the author and should not be
interpreted as representing official policies, either expressed or implied, of the Defense Advanced Research

Projects Agency or the U.S. Government.

—BiSTRIBUTION STATEMENT & |
. 19950201 002

s







Abstract

There is 2 middle ground between parametric and ad-hoc polymorphism in which a com-
putation can depend upon a type parameter but is restricted to being defined at all types
in an inductive fashion. We call such polymorphism non-parametric. We show how non-
parametric polymorphism can be used to implement a variety of useful language mech-
anisms including overloading, unboxed data representations in the presence of ML-style
polymorphism, and canonical representations of equivalent types. We show that, by using
a second-order, explicitly typed language extended with non-parametric operations, these
mechanisms can be implemented without having to tag data with type information at run-
time. Furthermore, this approach retains a “phase distinction” and permits static type
checking and separate compilation. Our aim is to provide a unifying language, translation,
and proof framework in which a variety of non-parametric mechanisms can be expressed
and verified.




1 Introduction

Polymorphism is the parameterization of an expression by a type. Traditionally, polymor-
phism is divided into two classes, parametric and ad-hoc[13]. Roughly speaking, parametric
polymorphism is uniform in that the computation cannot depend upon the type that in-
stantiates the parameter, while ad-hoc polymorphism can depend upon the type and need
not be defined at all types. In particular, ad-hoc operations such as “+” may only be
defined to work on a small number of types.

There is a middle ground between parametric and ad-hoc polymorphism in which the com-
putation can depend upon the type parameter but is restricted to being defined at all types
in an inductive fashion. We call such polymorphism non-parametric. In this paper, we show
how non-parametric polymorphism can be used to implement a variety of useful language
mechanisms including overloading, unboxed data representations in the presence of ML-
style polymorphism, and canonical representations of equivalent types. We show that, by
using a second-order, explicitly typed language extended with non-parametric operations,
these mechanisms can be implemented without having to tag data with type information at
runtime. Finally, we remark that our approach retains a “phase distinction” and permits
static type checking and separate compilation.

Using a second-order explicitly polymorphic language to implement non-parametric lan-
guage features is not a new idea. Morrison et al. describe an implementation of Napier83
that uses type information at run time to determine properties such as layout of an ob ject[11].
Tolmach has shown how to do “almost tag-free” garbage collection for parametric languages
such as SML by encoding them into a second-order language[14]. Ohori shows how poly-
morphic field selection can be implemented by first encoding the source into a second-order
language and then translating types to index structures[12]. However, all of these efforts
were directed toward a single language mechanism (e.g. garbage collection) and only Ohori
presents a formal account. OQur aim is to provide a unifying language, translation, and proof
framework in which a variety of non-parametric mechanisms can be expressed and verified.

This paper proceeds as follows: In Section 2, we present a simple source language, based on
Mini-ML[4]; an explicitly typed target language AML based on XML[10}; and a translation
technique that compiles Mini-ML into ML | In Section 3, we extend AML to provide a
non-parametric operator, typerec and in Sections 4, 5, and 6, we show how the translation
technique can be used to provide non-parametric language extensions for Mini-ML.

2 Compiling ML to \M*

2.1 The Mini-ML Source Language

Below, we give the abstract syntax for the types, type schemes, expressions, and values of
Mini-ML.

T € type = t|unit |7 X Ty [Ti—Te

¢ € scheme = Viy,...,0n.T

e € term  u= z|{)|{er,e2) |m1e |mee [fixzi(zz).e |er1es |let z=vine
v € value u= z[{)|(v1,02) |fixzi(z2)-€




In the interests of simplicity, Mini-ML types include only type variables (t), unit, binary
products, and functions. Type schemes are prenex quantified types. Expressions include
identifiers, unit, tuples, projections, applications, let expressions, and fix expressions of the
form fixz;(z2).e. We will use Az.e as an abbreviation for fixz’(z).e when 2’ is not free in
e. Note that we restrict let-bound expressions to be values for reasons detailed in Section
2.3.

A standard call-by-value operational semantics in the style of Felleisen et al.[5] (see also
Wright and Felleisen[16]) can be given to Mini-ML by defining evaluation contexts (expres-
sions with “holes”) and one-step reduction rules:

E € eval context = []|(Ee)|(v,E)|mE|Ee|vE

(7) Elr; (v1,02)] +— El[v] (i=1,2)
(fix,8) FEl(fixzi(zs).e)v] — El[v/2o)[fixa(z2).e/z;1]e]
(let,3) Ellet z=vine]l +— E[[v/z]e]

In Section 2.3, we define an equivalent dynamic semantics via translation to another lan-
guage.
Figure 1 gives a static semantics for Mini-ML by defining two judgements:

AF T type F'Fae:r

where T' is a type environment mapping identifiers to type schemes and A is a set of
type variables. The first judgement establishes the validity of a type in the scope of some
bound type variables by requiring all free type variables to be in A. The second judgement
ascribes a type to an expression. We say that the closed expression e has type 7 if and only
if 0 by e : 7 is derivable from the set of inference rules. The static semantics is essentially
the type system for the core of SML in that polymorphic types are introduced by the let
expression[9]. Unlike SML, we restrict the bound expression that is assigned a generalized
type scheme to be a value.

We state the following theorem without proof:
Theorem 1 (Mini-ML Type Preservation) If Q kg e : 7 and e —* v, then P by v : 7.

See Wright and Felleisen[16] for an example of how to prove this theorem.

2.2 The ML Base Target Language

In this section, we introduce a base target language, AML | similar to XML[10]. AMLjs o
stratified second-order A-calculus in which the polymorphic types live in a “higher universe”
than monotypes. Conceptually, the universe of monotypes is generated inductively, so we
are able to give elimination forms corresponding to structural induction on monotypes. As
we show in Sections 4, 5, and 6, these induction forms allow us to implement a wide variety
of interesting and useful language features in AML |

The four basic syntactic classes of AMZ | kinds (k), type constructors (u), types (o), and




FTV(r)C A
T type

I'(z)=Vt1,... 0T
AF T type AF 1, type
Thaz:[r/ts,e ., TaftalT

T EAtytn 05T
T,z Yt1,...,tn.T Fae:T

t; d A
Thalet z=vine:t (t: ¢ A)
T'Fa () :unit
TkFaer:mn Thae:m Thae:m1 X7y .
(i=1,2)
I'Fa (e1,e2) 171 X T2 THame:T;
T, v. , V. b :
Ty = V(11 > ),z = Vibae: (21,22 € T)

I'Fa fixzi(z2)e:m — T

Thaer iy — 1 Thae:m

T'Faeies:m

Figure 1: Static Semantics for Mini-ML




terms (e), along with values (v) that are a sub-class of terms, are given below:

ko€ kind u= Q ki — ko |ky Xk

u € constr = t|unit [ | X |(ug,uz) |7 u |7 u Atk | uy ug

o € type u= T(r)|o1Xo0p|01—0y]|Vt:ko

e € term u= 2 [()|(e1,e2) [mre|moe |At:k.e|eu] |fixzi(zy:0).e|e; e
v € value = z[()|(vi,v2) |[At:k.e|fixzi(az:0).e

The kinds include €, the collection of all monotypes, and are closed under products and
function spaces. We use 7, a subset of constructors, to range over monotypes:

T € monotype unit |X(ry,T2) | (1, 72)

The constructors include monotypes such as unit and type constructors such as -+, The
types of AML | whose elements are terms, include binary products, function spaces, and poly-
morphic types. In addition, types include explicitly “injected” monotypes (T(7)). Finally,
terms correspond to the basic expression forms of Mini-ML but are written in an explicitly
typed syntax. As in Mini-ML, we use Az : ¢.e as an abbreviation for fix2'(z : ¢).e where
a2’ is mot free in e. There is no need for a let-construct since this is definable using the
A-abbreviation together with type abstraction, but we continue to use let as a syntactic
convenience.

The dynamic semantics for AMLis defined by defining evaluation contexts and one-step
reduction rules:

E € eval context u= []|(E.e)|(v,E)|m E|E[u]|Ee|vE
() Elmi (v1,02)] +— Elv] (i=1,2)
(AD) El(At:k.e)u]] — ETl[u/t]e]

(fix,8) El(fixzi(zz:0).e)v] — Elfv/z;)[fixzi(zs: 0).e/21]e]

Note in particular that type abstractions are considered values and type application has an
operational reduction.

The static semantics for AMZis broken into a set of formation judgements and equivalence

judgements. Full details are given in Appendix A. Throughout, we use I' to denote a type
assignment mapping identifiers () to types (¢) and we use A to denote a context mapping
type variables () to kinds (k).

The formation judgements include constructor formation (A F u : k), type formation (AF
o type), and term formation (T b5 e: 0). The constructor formation rules are the typing
rules for the simply typed A-calculus with products. Though AML types are similar to Mini-
ML type schemes, quantification in AML js not restricted to be prenex and types are required
to be closed with respect to quantification over all kinds (not just the kind of monotypes)
and function spaces.

Term formation is given by a standard set of typing rules for a second-order calculus, with
the exception of a type equivalence rule:

I'kFae:o At oy =0y type

IT'Fae:om



This rule is needed to reason about explicitly injected monotypes obtained from constructors
(i.e. T(u)). Equivalence for constructors is defined using Bn-conversion. Hereafter, we shall
clide the differences between constructors and their corresponding explicitly injected types.

We state the following theorem without proof:
Theorem 2 (AML Type-Preservation): If ) g e : 0 and e —" v, then Dhgov:o.

A key property of AM L is that it maintains a phase distinction. That is, it is not necessary to
reason about term equality in order to show constructor equality. Furthermore, since AML g
explicitly typed, type-checking can be reduced to checking constructor equivalence. Finally,
since AML types are essentially a simply-typed lambda calculus extended with products
and a single, inductively generated base kind (), constructor equivalence is decidable and
consequently, so is type checking of AMLg).

2.3 Type-Directed Translation

In this section, we present a methodology for compiling Mini-ML-like languages to AML
like languages. Our approach, similar to the one used by Leroy[7], is to use a type-directed
translation where we first present a translation from Mini-ML types to AML constructors
and then use a term’s typing derivation to generate its translation into the appropriate
AML torm. Here, we give an example translation (the “standard” translation) that simply
demonstrates the technique. In subsequent sections, we extend MML and use different, but
similar translations to handle difficult implementation issues that we gloss over here.

The standard translation on types and schemes is defined by |7|s and lo|s respectively:

ltls =t

lunit|s = unit
|71 X m2ls = X(|7muls,|72ls)
ln—mls = =(nls,|mls)

IVt1,...,tn.Tls = Vi : Q... bt Q7|s

The standard translation on terms is defined by the judgement T' kA e : 7 =35 le| where
T and A are a Mini-ML type assignment and list of type variables respectively, e is a
Mini-ML term, 7 is a Mini-ML type, and |e| is the resulting AML term. Conceptually, we
take the derivation of T Fa e : T and use that to build a corresponding derivation of the
translation |e|. The judgement is defined formally in Appendix B. Here, we give the two
most interesting rules that translate identifiers and let-expressions:

T(z) =Vt1,...,t0.T
AFrm type AF T, type
Thaz:[ri/t,...,Tn/talT =5 2[|T1]s] . l7als]

T Aty ¥:T =5 |0
T,z Vi,...,tp.7 Fae:T =5 |e

Fhalet z=vine: 7 =5
Az Vi Q.. tn s Qs |el) (At 1 Qe Q.Jv]) (t; & A)
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The first rule makes type application explicit while the second rule makes type abstraction
explicit. Note that the type translation used in the first rule can produce constructors with
free constructor variables. However, due to the requirement that A + 7; type, we can show
that the translation has bound these type variables in an outer context using the second
rule.

Given the syntax-directed nature of the translation rules, it is apparent that once a deriva-
tion of T' Fa e : 7 is fixed, then there exists a unique [e| such that T'ta € : 7 =5 |e|. We
state the following theorem without proof, using |T'|s to denote the type environment that
assigns the type [I'(z)|s to 2 and |A| to denote the AME context that assigns the kind Q to
each variable in A.

Theorem 3 (Standard Translation Type Preservation): IfT'ba e: 7 =g |e|, then |T|s Fia
lef + |7]s-

We state the following theorem without proof, where we use # to denote an “observable
type” (i.e. unit or products of observable types)!:

Theorem 4 (Standard Translation Correctness): If § g e : 0 =>5 |e| and e —* v, then
there exists a |v| such that Oy v: 8 =5 |v| and |e] —* |v|.

This theorem can be proved using Theorem 3 and an erasure argument, similar to the one
described by Harper and Lillibridge[6].

Note that the translation is not valid for Standard ML programs since SML allows non-
value expressions bound by a let to be assigned a generalized type, unlike our definition
of Mini-ML (see Section 2.1). For instance, SML would assign a generalized type to the
diverging expression bound in the following let-expression:

let 2= (fixy(z).y2z){()in()

Since our translation scheme makes type abstraction explicit, our translation would yield
the expression
(A(z VL Qut).())(At: Q.(fixy(z : unit).y 2)())

that (incorrectly) terminates. Thus, we limit generalization in Mini-ML to syntactically
apparent values. Fortunately, Wright has shown that this value restriction is reasonable in
practice for languages such as SML[17]. Furthermore, this restriction solves the well known
problems of generalization in the presence of other computational effects including mutable
objects and first class continuations.

Given the value restriction, it is possible to eliminate all polymorphism at compile time by
duplicating and/or inlining let-bound values. We do not consider this approach reasonable
since it prevents effective separate compilation of polymorphic definitions.

3 Non-Parametric \MZ

In this section, we discuss non-parametric extensions to AML that allow us to “match and
recur” over the constructors of a monotype to determine a computation. Recall from Section

'The theorem still holds if we extend AM% with another primitive “observable” type such as int with
more than one value.




2.2 that the type system of AMLis stratified so that polymorphic types live in a higher
universe than monotypes and monotypes are conceptually generated inductively. Thus,
it is possible to define well-founded induction elimination forms for AML monotypes. In
this section, we show how one general elimination form called typerec may be added to
AML without destroying the phase distinction. In Sections 4 and 5, we show how typerec may
be used to implement overloading and canonical representations for Mini-ML. In Section 6,
we use other non-parametric extensions to AML t4 sypport unboxed representations.

To add typerec to AML | we augment the syntactic classes as follows:

u € constr = ... | TypeRec(7; uy; ux; u—y)
e € term u= ... | typerec(T; ey; ex; e-)

We add typerec to the terms and the corresponding TypeRec to the constructors. Intuitively,
typerec corresponds to a combination of a “type-case” operator with a “type-recursion”
operator, so that computations may depend upon a single type.

Before giving the changes to the dynamic semantics to support typerec, we note that com-
putations involving typerec will depend upon the type constructor used, so we need to
evaluate constructors to a canonical form. Since types in ML are essentially a simply
typed A-calculus extended with products, TypeRec, and a single base kind of monotypes
but no fix-point construct, we note that such normal forms exist and can be found using,
for instance, call-by-name, call-by-need, or call-by-value evaluation strategies.

The one-step evaluation relation for terms is augmented so that typerec evaluates its type
constructor argument. It then uses the root constructor of the canonical form to select the
appropriate sub-term and applies this term to the argument constructors and the result of
applying the typerec to these constructors:

E[typerec(uﬁit; eu; ex; €-)] +— Eleyl
Eltyperec(X u; eu; ex; e—)] +—— Elex[ny u][72 u]
(typerec(7y u; ey; ex; e—))
(typerec(7y u; ey; ex; e-))]
Eltyperec(= u; ey; ex; e5)] +——  Ele_[n u][r2 u]
(typerec(n u; ey; ex; €—))
(typerec(ms u; ey; ex; e=))]

The static semantics are changed so that TypeRec constructors are considered equivalent
to their “unrolled” counterparts, and the following term formation rule is added for typerec

expressions:
Al T7:Q type AFVt: Q.o type

Thaey: cr(uﬁit)
T ha e Vi QY : Qo(ty) — o(tz) = a(5(t1,12))
T ba ey : Vi QN Qua(ty) = o(ta) = a(X(t1,12))
T ba typerec(T; ey; e—; ex):o(T)

Note in particular that 7 is restricted to being of kind © (i.e. a monotype).




makestring : Vt: 8.t — string

makestring =g.; Vt: Q.typerec(t;ey;es;ex;e )

ey = Az :unit."on
es = Az :string.("""g )
where ex = Aty: ?/}t}’ QA t}\ ”—>”s£ring./\f2 : t2AT itring.)\:v 1ty X 1.
("< (fi(mx)) " T (f2 (m2 ) M)
e~ = Aty : QAL QAf1 1ty — string. A fy 1ty — string. Az 1 t; — ¢,
ll*fn*”

Figure 2: Defining makestring in AML

4 Overloading

In this section we show how typerec can be used to implement various features that are gen-
erally classified as overloading. A prime example is Standard ML’s polymorphic equality
(poly-eq) that takes two (non-functional) objects of the same type and returns an indication
as to whether they are equal. Another example is a print operation that prints a represen-
tation of an arbitrary value. These operations can be easily implemented by AML typerec,
and can thus be exported to Mini-ML. However, unlike true overloading, the operations
must be defined at all types.

Overloaded operations are usually implemented by tagging values with constructor infor-
mation. For example, Standard ML of New Jersey (SML/NJ) tags all values with enough
information to support polymorphic equality[1]. Our approach does not tag values with
constructors. Instead, we pass constructors only to polymorphic operations and keep the
computations on constructors separate from the computations on values.

As an example, consider adding the primitive type string to AMZ along with string literals
(e.g. "foo") and an infix concatenation operator (*). Figure 2 shows how a “makestring”
function can be coded using typerec. This function takes a type and computes a function
that, when given a value of that type, returns a string representation of the value. The
interesting case is the sub-expression ey, that, when applied to two types 7, and 72, and
given functions for converting values of these types to strings, produces a function that
takes a product of these two types and converts it to a string. For example, the expression:

makestring[string x unit] ("foo" ())

evaluates to the string "<‘foo’,<>>". Note that it is trivial to export the makestring
function to Mini-ML as a constant with type Vt.t — string.

As is obvious from the definition of makestring, typerec expressions quickly become unwieldy,
so we adopt a pattern matching, recursive style in subsequent definitions. As another
example of using typerec to provide an overloaded operation, consider computing the size
of a value in machine-words of memory. This is used in languages such as C to allocate
memory, copy objects, etc. The sizeof operation can easily be expressed as an overloaded



function using typerec:

sizeof[unit] = 0
sizeof[int] = 1

sizeof [X(T1,72)] = sizeof[r;] + sizeof[r,]
sizeof[>(my,72)] = 2

Our approach is similar to the “method passing” approach suggested by Wadler and Blott as
an implementation technique for Haskell overloading[15]. In the method passing approach,
dictionaries of methods (i.e. functions) are passed as “hidden” arguments to overloaded
functions. The overloaded functions simply select and invoke the appropriate method from
the dictionary. However, Augustsson notes that method passing is difficult to compile ef-
ficiently due to the use of higher-order functions[3]. In contrast, our approach passes type
constructors which are simply data structures as far as a compiler is concerned. Conse-
quently, our approach may not suffer from the same optimization difficulties as method
passing. We further highlight the differences between method passing and our approach in
the context of compiling polymorphism in Section 6.3.

5 Polymorphism and Canonical Representations

Consider adding an operation view to Mini-ML along with the following typing rule:

Thpae:T r=1
!

Thavieweas 7 :7

The rule allows us to view e as if it has type 7/ as long as we can prove that e has type
7 and 7' is equivalent to . Figure 3 gives one definition of equivalence that is generated
by considering tuple types equivalent up to associativity. This situation arises in languages
such as C where structs (records) are represented in a “flattened”, canonical form. Viewing
a struct is more efficient than constructing a copy of the struct with the desired associativity.
Furthermore, viewing preserves sharing of the mutable components while copying does not,
because we can view through refs.

In an abstract sense, view allows us to observe that two types are represented by the same
canonical form. However, maintaining a canonical form such as C’s flattened structs is
difficult in the presence of polymorphism. As each value is created, we must insure that the
value is in the canonical form. But we cannot determine “the” canonical form if the object
is polymorphic.

For example, consider the equivalence relation defined in Figure 3 and suppose we choose
right-associated tuples as the canonical representation of tuple types. We cannot determine
whether the type t X unit is in canonical form or not, because ¢ could be instantiated to
unit, in which case the tuple is canonical, or ¢ could be instantiated to unit X unit, in which
case the type is not canonical. In this section, we show how this canonical form can be
maintained by using non-parametric primitive operations in conjunction with typerec. We
do not use a “truly flattened” representation of tuples as do C implementations, because
AML only supports binary tuples. However, in Section 7 we discuss adding n-tuples to
AML t6 support such a representation.




TI=T TR=T3 =T Ty = T4

r=r TN =T3 T1XTQET11XT£
n=ET T = Ty r=1
TI—Ty = Ty — T4 7 ref = 7/ ref T X (T2 X 73) = (11 X T2) X T3

Figure 3: Associativity Equivalence of Tuples

We start by giving a translation on types, |T|;:

el =t
lunit], = unit
|7 ref], = réf(|7‘|b)
I—=ml, = =(nl,|m2l)
I x mly = o |y |7l

where o’ is defined using the type constructor TypeRec to “flatten” tuple types into a
right-associated form:

o =def My QA Q.TypeRec(tl P Uy Uk US)

wy = x(unit,tp)
where Ux = Mg, tp, 1,1 1 Qx(tg,1})
Uy = Mgyt 0,1t QX (S (e, 1), T2)

Recall that the TypeRec constructor is equivalent to its unrolled counterpart and the un-
rolling is guaranteed to terminate because the type argument is constrained to be a mono-
type (kind ).

The translation on terms must be modified so that tuples are created in their canonical form

and projections extract the appropriate components according to the source types. In the
translation rules below, we have encapsulated these operations into three non-parametric

functions: pair’, projg and projz.
T'Faer 7=y el
T Faeg:m =y e
T Fa (e1,e2) 1 71 X 12 =y pair’ [|71]y){|72ls] e1] [e2]

Thae:m X1 =y e

T ka mie: i =y prop[|mls]ll2ls] el
The definitions of pairl7 and proj? are:

pair’ : iy, by : Quty — t, — (0'b t t3)

pair’[unit][r;) = Az :unit.Ay: mo.(z.y)
pairb[—">(7'a,1'b)][7'2] = Az: -.—.>(Ta,Tb),/\y : o (2,Y)
pairt[X (e, 1)][72) = Az :X(7a,7), Ay : To.(my @ pair’[n][re] (72 2) )

10



projli 1 Vi, tg: Q.(Ub 11 12) = 4

proji [unit][r;] = Az: >:<(ur3it,7'2).7r1 T
proj‘i[—'f(ra,rb)][rg] = Az: >.<(T'>(*ra,rb),7'2).7r1 T
projti[x(ra, )] = Az X(X(Te, ), T2)(m1 :U,projti[Tb][’Q] (r22))

pl’Ojg : th,tz : Q.(O’b 131 t2) — 19

Az : X (unit, 7). mo T
Az 2 X(=(74,7p), T2) T2 &
Az : >2(5<(Ta,Tb),T2)-Pf0jg[7'b][7’2] (m2z)

proj; [unit][7;]
proj[=>(7a, 7)][72]
profy [ X (7a, 7)][72]

We have used the pattern-matching style definitions for readability, but these can be coded
using typerec.

The interesting case in each of the definitions is the product case. For the pair’ function,the
product case causes the pair # to be flattened onto y by projecting off the ﬁrst component
of z and pairing it with the flattening of the rest of z with y. For the prOJ1 function, the
product case projects the 7, component using w1 and the 7, component using proh[rb]['rz]
and tuples them to produce the result. For the prOJ2 function, the product case removes
the 7, component usmg 73 and removes the 7, component using proj[7s][T2)]-

Whenever pair® or proj are used at monomorphic types, the type-applications and typerec
occurrences can be eliminated, resulting in a series of primitive pairing and/or projection
operations.

6 Compiling Polymorphism

In monomorphic languages such as C, types are used to describe the size and shape of a
data structure’s representation. Operations such as pairing and projection are compiled to
primitive operations that differ according to the types. For example, assuming floats are
two words and ints are one word, a pairing operation on floats (pairgoat float) Will allocate
twice as much memory as a pairing operation on ints (pairjnt jnt). Since all types can be
determined statically in a monomorphic language, the compiler can choose the appropriate
primitive operation (e.g. paifjntint VEISUs pairfloat float) at compile time.

In a polymorphic language, however, it becomes difficult to choose “the” primitive operation
at compile time, because the type might vary at runtime through polymorphic instantia-
tion. This issue is entirely glossed over by the standard translation of Section 2.3. In this
section, we discuss three techniques for solving this problem. The first technique, used by
the SML/NJ 0.93 system, abandons the idea that types describe the shape of objects and
converts objects to a universal representation so that a single primitive operation suffices
for all cases and can always be selected at compile time. However, this approach introduces
indirection in the data structures which can be expensive in both space and time. The
second approach, described by Leroy and used in the Gallium compiler, compiles monomor-
phic code using the natural representation and, roughly speaking, polymorphic code using

11




the universal representation. Coercions are introduced to convert values to and from the
universal representation as necessary, yet the coercions and all primitive operations are
selected at compile time. However, Leroy’s approach does not extend directly to mutable
objects and does not work well with large objects. The third approach uses non-parametric
primitive operations to avoid ever having to introduce indirection in data structures at the
cost of selecting some primitive operations at run time. Furthermore, the approach extends
directly to mutable objects. It is particularly illuminating to see all three approaches in our
type-directed translation framework.

6.1 The Boxing Approach

In SML/NJ (versions 0.93 and earlier)[2], all objects are represented in a universal fashion
so that primitive operations may be selected at compile time. This is accomplished by
bozing values — that is, placing objects larger than size one in memory and using a pointer
to the object as its representation.

We can cast the boxing strategy into our type-directed framework as follows. We add to the
set of AML monotypes, box(T), representing boxed values and we assume two new families
of operations, box, and unbox, that convert objects to and from the boxed representation
at the appropriate type. We further assume that primitive operations such as pairing

and projection work uniformly on boxed types. So, for example, Pa'rbox(mt) box(mt)

pairbéx(ﬂoat),béx(float) and we shall write pairbéx,bé for the primitive pairing operation on

boxed values, regardless of the type.

The type translation for the boxing strategy is defined as |r|p using an auxiliary definition,
lI7li5:

s =t
[lunit||p = unit
|71 X 2]l = X(IT1|B,|7"2|B)
llIn—=mlle = =(|nls,|m|s)
I7ls = box ||I7]|s
[Vi1,...,tn.Tlp = Vi1 :Q,...,t,: Q7B

The full term translation is given in Appendix C, but we note here that introduction rules
box their results while elimination rules unbox their arguments. For example, the pair and
projection rules are:

I'kaer:m =p e I'kaep:m=p e

T |‘A <61,62> ‘T X T9 =B bOXbOXXbOX(paiI’bOX’bOX(|€1I,Iezl))

F'Fae:m X 7 =5 e
Fhamie:n =p proji,boxxbox(unboxbox(lel))

(i1=1,2)

The identifier rule must use the auziliary type translation, ||7||p, in instantiation since we
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have already required that ¢ be translated to bé)x(t):

I‘(:c) :th,...,tn.’l‘
At T type At T, type
Traz:[r/t, .., /talm =B @[lImillB] .. [l 5]

1t is straightforward to show that the boxing translation like the standard translation pre-
serves its type translation. The key lemma one must prove is that llplls(I71B) = |p(T)]B>
where p is the substitution:

pz{tlHTlﬁ-'-athTn}

and ||p||s is the substitution that maps ¢ to [lo()||B. Once type correctness of the trans-
lation is established, it is easy to see that all primitive operations have been effectively
selected at compile time by the translation, since all values are boxed and there is only one
primitive operation for boxed values, regardless of the type.

6.2 Leroy’s Approach

The boxing compilation strategy produces excessive indirection which can cost substantially
in both space and time. Leroy proposed an alternative strategy that only boxes values that
are given the type ¢ (a type variable.)[7]. Consequently, only polymorphic code pays the
price of indirection.

We can cast Leroy’s compilation strategy into our type-directed translation f.ramework as
follows. We define a type translation from Mini-ML to AML (extended with box) that only
boxes polymorphic objects:

ltl. = boxt
lunit]y, = unit
| xnln = X(|71lz, |72lL)
|m—rlr = =(nlc.|mlz)

Vt1,..-otn.Tle = Vi : Qo iitn: Q7L

The term translation is similar to the standard translation of Section 2.3. In particular, no
boxing is introduced by the value creation rules. However, a type mismatch arises in the
identifier translation rule, because a polymorphic object is compiled as if ¢ is boxed, but
the use expects it to be unboxed. That is, if p is the substitution used in the instantiation -
rule to map type variables to types, then |p|r(|7|r) # |p(7)|L. Leroy suggests applying a
coercion, S, to the polymorphic object at its uses to convert the object to the appropriate
type, based on p. Thus, the translation rule for identifiers, making p explicit becomes:

[(z) =Vt1,...,th.T
P = {tl '—>T1,...,tn l—->Tn}
Al p(t1) type At p(t,) type
Tha @ [p(t1)/t,. s p(n)/ta]7 =L Sp(; 7)lp(t1)Iz] - - - [Ip(tn)] L]

The definition of §, is given below along with the dual coercion, G,, that is necessary for
coercing functions. § stands for “specialization” and G for “generalization”. Technically,
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we should use the type-specific primops such as pair, . and proj, ., .. in the definitions
instead of the generic primops such as (-, and =;.

Sy(e;t)
S,(e;t)

Sy(e; unit)
S,(e;m1 X 12)
Sy(e;1—12)

Go(et)
Gole;t)

G (e;unit)
Gole;m X T3)
G,(e;T1—12)

unbox|, ), (€) (t € Dom(p))
e (t & Dom(p))

let z=-ein(S,(m12;1),5,(7r22;72))
let f=einXz:|r|L.S,(f(G(x;72));71)

P
e t om(p

let z=ein(G,(m2;71),G,(722;72))
let f=eindz:|r|L.G,(f(S,(x;72));71)

In order to prove translation type preservation, we need to show that S, is a function of
type |p|(|7|L) — |p(7)|L. Similarly, we need to show that G, has type [p(7)|r. — |p|r(|7|L)-

As with the boxing translation, Leroy’s coercion translation has effectively selected the prim-
itive operations at compile time. Furthermore, there appears to be less boxing/unboxing of
values. In particular, boxing/unboxing only occurs if polymorphism is used.

6.3 Our Approach

Unfortunately, Leroy’s approach does not directly extend to mutable data structures such as
refs or arrays, and is impractical for “large” objects such as vectors and lists. The problem
is that §, and G, essentially copy an object, changing some of the components to/from the
boxed state. Copying is expensive for large objects and is incorrect for mutable objects.
If we add ref to Mini-ML, then we would like to leave the contents of ref cells unboxed in
the translation to AML but we cannot extend the S, and G, conversions directly to support
this. A first attempt at extending S, to refs is:

Sp(e;Tref) = ref(5,(le;T))

but this does not preserve sharing of refs. A second attempt at extending S, is:

Sy(e;Tref) = etz = e
in
z:=5,(1z;7)
end

but this is unsound since the contents of # must simultaneously have type |p(7)|;, and
lp|L(|7|L), which are not necessarily the same.

Leroy suggests two ways to fix this shortcoming. The first technique treats a ref cell (or
large object) as if its contents were polymorphic and thus the contents are boxed. In fact,
as Leroy points out, the contents must be recursively boxed. To see the problem, note that
a ref containing a tuple of must be “viewable” as not only a tref, but also a (t1 x to)ref.
A consequence of this is that the S and G coercions must be changed at type variables
to recursively unbox/box values. Obviously, this approach can be quite expensive. As an
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example, a polymorphic array instantiated to be a float array must box all of the floats.
Tf the array is instantiated to be an array of complex numbers (i.e., pairs of floating point
numbers), the tuples and their components must be boxed.

The second technique, used by the Gallium compiler, associates methods (i.e., functions)
with a ref/array to read and write components of the ref/array. In this fashion, Gallium is
able to keep the components of the mutable object unboxed since the § and G conversions
can be applied to the methods instead of the data. The method passing approach was also
proposed by Wadler and Blott as an implementation technique for Haskell overloading[15].

An alternative approach to method passing that we propose, is to pass type information to
the read and write operations on arrays and let them compute the appropriate primitive,
monomorphic read/write operation, possibly at runtime. This amounts to making read
and write non-parametric polymorphic operations. Furthermore, we note that other data
structures, such as tuples, may always be unboxed by making pairing and projection non-
parametric polymorphic operations. In fact, boxing can be eliminated entirely from data
structures? simply by translating all polymorphic primitive operations to non-parametric
polymorphic functions that compute the appropriate monomorphic operation based on the
type. Of course, if the operations are applied to monomorphic types, then the type compu-
tations may be eliminated at compile time. Thus, like the method passing approach, only
polymorphic code pays the price of computing a primitive operation at compile time.

Here we sketch briefly and at a high-level how the non-parametric approach is formalized in
our framework, so that boxing may be eliminated from tuples. The same techniques can be
applied to function application (to unbox arguments and place them in registers), refs and
arrays, and other data structures. We assume that the following non-parametric operators
are added to AML | as we added typerec:

pair : Viy,ta: Qi — tg — (1 X t2)
projl : th,tz : Q.(tl X tg) — 1
proj2 : th,tz : Q.(tl X tg) — 19

These operations are essentially functions that compute the appropriate primitive operation
according to their type arguments, so we add the following corresponding reduction rules:

Elpair[n][r]] +—— Azq:7Azg:To.pair, L1 22
Elproji[mi][r2]] +— Az :(mL X T2).projy o ,m &
Elprojy[ml[me]]l +=— Az :(m1 X T2).projo s rn &

Tt is reasonable to assume such operations because these functions are defined by a compiler
for a monomorphic language.

The translation is straightforward: we simply map (e1 : 71,€2 : T2) to pair[|m|][|72(] |e1] lea|
and similarly for projection. However, we can specialize the translation in order to guarantee
that the appropriate primitive operations are chosen by the translation for monomorphic
code. This is done by introducing two translation rules for each operation: one for the
monomorphic case that performs the above reductions at compile time and one for the

214 is worth noting that boxing cannot be directly eliminated from closures based on types, because the
type does not tell us the size of the code nor the types of the free variables.
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general case where the reduction is delayed, possibly until run time.

I'kaer:m =0 e I'Faey:m =0 e
FTV(n)=FTV(r) =0
I Fa (e1,e2) : 11 X 19 =0 pair,, ., le1] |ea]

r [‘A €1 :7T1 =0 |€1| T l‘A €2 1Ty =0 |€2|
I'Fa (e1,62) 1 1y X 73 =0 pair[r1][2] le1] |e2]

I'Fae:m X7 =0 e
FTV(n)=FTV(r) =0
['kame:mi=oproj; ., -, lel

IF'kae:r X1 =0 |e
FTV(n)#0  FTV(r)#0
I'ta mie: 7 =0 proj;[mi][r2] |€]

It is worth noting that as soon as a type becomes closed, these reductions can be made.
Consequently, if the non-parametric approach is used to implement polymorphism at the
module level, these type reductions can occur when a functor is applied to a structure
argument.

The boxing approach and Leroy’s approach have one advantage over message-passing and
our approach: no restriction is needed on polymorphic generalization (see Section 2.3),
so these techniques work directly for Standard ML. But, as mentioned earlier, Wright
has found that the value restriction is not a problem in practice. Furthermore, the non-
parametric approach has an important advantage over boxing and Leroy’s technique for
compiling polymorphism: Since boxing need never be introduced (nor prohibited) in the
representation of data structures, interfacing to an external entity such as a C procedure,
or the operating system, or a device becomes much simpler and more efficient since the
representation demanded by the external entity can be met directly. This is true, of course,
only if tags for other purposes such as garbage collection or polymorphic equality can be
eliminated from the representation. Fortunately, as we have shown earlier, overloaded
operations such as polymorphic equality can be implemented as a non-parametric operation,
so values do not need to be tagged for this purpose. Furthermore, Tolmach has recently
shown that by translating ML into a second-order language like AML | copying garbage
collection can also be implemented without the need to tag objects[14].

Of course, method passing can be used to eliminate boxing as well, since method passing and
our approach appear to be duals of each other. However, with method passing, a method
for each primitive operation (including pairing, reading/writing from a ref, etc.) must be
eagerly constructed when a polymorphic function is instantiated because we cannot tell how
the object we pass to the function will be used. Augustsson reports that computing all of
these methods is a source of inefficiency in most implementations of Haskell type classes[3].
In contrast, for a non-parametric operation, “methods” are constructed lazily at the point
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where they are used while a single type is constructed eagerly. Which approach leads to
superior performance is application and implementation dependent. Fortunately, the two
approaches are not incompatible: if a primitive operation is found to be frequently used, for
instance computing the size of an object, then the method passing approach can be used to
implement the operation. Other operations can be implemented using non-parametricity,
with the expectation that they will be invoked at most once.

7 Conclusions and Future Work

We have demonstrated that by translating ML-like languages into a second-order, explicitly
typed language extended with the ability to define non-parametric operations, we can ad-
dress and solve a variety of hard language implementation problems, including overloading
and unboxed representations in the presence of polymorphism. Our approach is to define
a type-directed translation from the source language to the target language. The target
languages we have used are based on MML 5 stratified language in which monotypes can
be thought of as being inductively defined. Consequently, we are able to extend AML with
induction elimination forms (e.g. typerec) to support the definition of non-parametric op-
erations, yet type checking for the target language remains decidable.

The problems we have concentrated on are essentially representation issues: We are con-
cerned with providing the programmer and/or the implementor of a polymorphic language
with maximal control over representations of data structures. In particular, we have shown
how unnecessary indirection (boxing) may be eliminated even in the presence of polymor-
phism and we have shown that it is not necessary to tag objects to support language
features such as overloading. Others, such as Tolmach and Ohori, have backed this claim
by demonstrating that even more language features, notably copying garbage collection and
polymorphic field selection, can be implemented using this same general technique.

We still have many difficult open problems to address: First, we expect that AML may
be extended to work with n-tuples instead of just binary tuples, but the details have not
been worked out. The basic idea is to add Q list to the kinds and consider “n-tuple” as a
constructor of kind  list — . Then, an induction elimination form (fold) on these lists
may be added as a term. N-tuples are necessary to implement truly flattened representations
of tuples efficiently. Second, we see no way to provide an induction elimination form for
general recursive types without losing decidability of type checking. However, inductively
defined recursive types, such as lists and trees, can be effectively de-structured by a finite
unrolling, so we expect that we can add a simple, but effective facility for such types. Third,
there are obvious connections between views and subsumption and we hope to explore this
in order to support an efficient implementation of, for instance, record subsumption in
the style of Ohori. Finally, we are in the process of building a prototype compiler that
translates SML/NJ source to an intermediate language based on the concepts of AML and
a back-end that supports unboxed, tagless representations. We hope to use this prototype
empirically to explore tradeoffs in representation techniques such as method passing versus
non-parametric operations.
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A ML (with typerec) Static Semantics

A.1 Constructor Formation

A(t) = k

Avt:k A& unit: Q AFS:0xQ—Q

Al u ik Al ug:ky
A}"XQXQ—%Q A}—(Ul,u2):klxk2

Abtu:k) Xk
A7, uk;

Atk Fuck, AFuy ik — ko AFuy:ky
Ab Atk ky — ky N

AbFu:Q Al uy:Q
AFu:Q—-0—-0Q
AFu,:Q—-0-Q

A+ TypeRec(u; uy; ux; us): Q

A.2 Type Formation

Aru:Q AF oy type At oy type
A & unit type AFT(u) type Al oy X 0y type
At oy type AF oy type Ajt:klF o type
Al oy — oy type AFVt:ko type

A.3 Term Formation

Akl o type I'(z)=0¢
F'Faz:o I'Fa () : unit
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A4

Fi‘Aeli(Tl I‘l‘A€2:0'2 I‘}‘A€20'1X0'2
T Fa (e1,e2) 1 01 X 02 F'kame:o;

(i=1,2)

I‘}—A,t;ke:(f
TkaAt:k.e:Vi:ko

(t ¢ Dom(A))

T,z1:(01 — 02),z2:01Fa e o

(z1,z2 ¢ Dom(T))

T ba fixzy(zg : 01).€: 01 — 02

Tkae:Vi:ko Thpae;:io1— 03 T'haer:on
T Fa elu]: [u/tlo Thaeles: oo

Thae:o T kA 01 =09 type
Thae:os

AFT:Q type AFVt: Q.o type
T ba ey : ofunit)
T ha el Vi : Qg : Quo(ty) — o(ta) = o(=(t1,12))
Tha ex iVt : Qi : Qo(t) — o(tz) — o(x(t1,12))
T kA typerec(r; ey; e—; ex):o(T)

Constructor Equivalence

AFu ik Al gk
Al—ﬂ:i (ul,uz)Eui:ki

Al u:k Xk
Al“(?fl’u,ﬂ"zu)_:'u:k1>(k2

A"Ultkl A,t:klf-u2:k2
AlF (At . k].’d2) U = [ul/t]u2 . ’Cz

AI‘UZkl—-)kg

AbAtiki(ut)=u:ky — ko (t ¢ Dom(A))
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A+ TypeRec(unit; uy: uy; ©.):Q
AF TypeRec(uﬁit; Uy Ux; U) = uy 0

A F TypeRec(x (u1,uz); uu; ux; u_):Q
A& TypeRec(x(u,u2); uy; uy; u_) = ux(TypeRec(uy; uy; uy; u_.))(TypeRec(uz; uy; ux; us))

A+ TypeRec(—(uy,up); uy; ux; us):
A F TypeRec(—(u1,u2); wu; uy; u—) = u(TypeRec(uy; uy; uy; u_,))(TypeRec(ug; uy; ux; us))

A.5 Type Equivalence

AFm=rn:Q
A F T(unit) = unit type AFT(r)=T(r2) type

AFT(x(m1,m2)) = T(r) x T(7y) type

A+ T(5(r1,72))=T(n1) — T(r2) type

B The Standard Translation

[t] = t
lunit| = unit
i x| = x(|nl,|72l)
Im—m] = S(nl|r)
Vi1, .. ta] = Vi1 :Q,... 8, : Q7|

I'(z)=Vty,...,t,.T
At T type Ak T, type
Phaz:[n/ty,...,mm/t)r =s z[|nls]...[|Tls)

I'ka () :unit = ()
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I'hae i1 = |e] T'Faeg:Te = e
T Fa (e1,62) : 71 X T2 = (leq],]e2])

Thae:r X1 = |e
I'bame:Ti = mile

(i=1,2)

Iz, —V.(nn— )22 Vbkae:in = le] (21,22 ¢ T)
1442

T Fa fixzi(zg).€ : 71 — 7o = fixzy(zg 1 |T1]).[e]

Thaer:m — 2= leg]
T |‘A €y T = |62|
I['Faeres:m = |en]]es

F FA,tl,...,tn v T, = l?]l
[z — Vt1,...,tp. 7| Fa e 7= |e

Thalet z=vine:7=>
Az V1 Qb s QT e)(At 1 Q,0 0t s QLo]) (6 € A)

C The Boxing Translation

e = ¢t
|lunit|]|pg = unit
lIm x mllp = x(InilB,|m2lB)
llm—nllp = =(nls;|mlB)
Irls = box |||z
Vi1, ...,tn.TlB = Vt1:9,...,4, : Q7B

T(z) =Vi1,... tn.T
AF T type AF T, type
LFaz:[n/t,...,ma/talr =B 2llinl|B]. . . [l 8]

T Fa () :unit =5 boxu;: ()
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FFA €1 :T1 =B |61| I‘|‘A €2 T =R |62|
I'ba(e1e2) 171 X T2 =8 boxboxxbox(pairbox,box(lel|v leal))

IF'bae:m X1 =8 e

- (i=1,2)
I'Famie:n =B proji,boxxbox(unboxbox(|e|))

(m — V. F T =B e
.I‘,ml = V.(r — n),zy— Vo ba e‘ T2 =B le| (21,22 ¢ T)
T Fa fixzy(zz).e: 71 — T2 =B boxp o poxfixT1(22 1 |T1]B)|€]

I'bae:m — 10 =5 e
T'taex:m =B e
Thaejey: 7 =p (unboxy oy pox l€1]) €2

I'Fay,tn U ' =3B [v]
Tz = Vt1,...,tn. 7| Fae: T =5 |
F'kalet z=vine: T =p
A2Vt Q. b, QT B e ) (At 1 Q, .. it 1 Q. |0]) (t: € A)
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